Neuroprotective effect of upregulated sonic Hedgehog in retinal ganglion cells following chronic ocular hypertension.

نویسندگان

  • Jihong Wu
  • Shenghai Zhang
  • Xinghuai Sun
چکیده

PURPOSE To determine sonic hedgehog (Shh) expression and whether it exerts neuroprotective effects on retinal ganglion cells (RGCs) in a rat chronic ocular hypertension model. METHODS Intraocular pressure (IOP) elevation in adult rat was induced by episcleral vein cautery. Retinal expression of Shh protein and mRNA was determined by immunohistochemistry, Western blot analysis, and real-time PCR. Exogenous Shh and its inhibitor cyclopamine were intravitreally injected to examine their effects on RGC survival after ocular hypertension by the counting of retrograde DiI-labeled RGCs. Shh pathway components mediating neuroprotective effects were characterized using Western blot analysis and real-time PCR. RESULTS Shh was mainly detected in the RGCs in normal adult rat. Retinas from the elevated IOP group had 2.1- to 4.4-fold greater Shh expression than control retinas (P < 0.05). Shh promoted RGC survival at 2 and 4 weeks after IOP elevation in a dose-dependent manner, resulting in a loss of only 4.54% +/- 0.36% RGCs at 2 weeks (P < 0.01; vs. PBS-treated groups). In contrast, cyclopamine increased RGC loss. Protein and mRNA levels of the Shh signal transducer Smo and the downstream transcription factor Gli1 were significantly upregulated in RGCs after chronic ocular hypertension or intravitreal injection of Shh. CONCLUSIONS Shh and Smo are upregulated in a time-dependent manner in retinas exposed to ocular hypertension, and Shh has neuroprotective effects on damaged RGCs in a rat chronic hypertension model. Shh may exert neuroprotective effects by relieving the inhibition of Smo and subsequently activating Gli1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension.

PURPOSE To examine the neuroprotective effect of the alpha(2)-adrenergic agonist brimonidine in a chronic ocular hypertension model. METHODS Intraocular pressure (IOP) was elevated by laser photocoagulation of episcleral and limbal veins. Retinal ganglion cell loss was evaluated in wholemounted retinas. Brimonidine or timolol was administered, either at the time of or 10 days after IOP elevat...

متن کامل

Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension

Coenzyme Q10 (CoQ10) is a mitochondrial-targeted antioxidant with known neuroprotective activity. Its ocular effects when co-solubilised with α-tocopherol polyethylene glycol succinate (TPGS) were evaluated. In vitro studies confirmed that CoQ10 was significantly protective in different retinal ganglion cell (RGC) models. In vivo studies in Adult Dark Agouti (DA) rats with unilateral surgically...

متن کامل

Modulation of microglia by Wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model

The active component of Wolfberry (Lycium barbarum), lycium barbarum polysaccharides (LBP), has been shown to be neuroprotective to retinal ganglion cells (RGCs) against ocular hypertension (OH). Aiming to study whether this neuroprotection is mediated via modulating immune cells in the retina, we used multiphoton confocal microscopy to investigate morphological changes of microglia in whole-mo...

متن کامل

Protection of Retinal Ganglion Cells and Retinal Vasculature by Lycium Barbarum Polysaccharides in a Mouse Model of Acute Ocular Hypertension

Acute ocular hypertension (AOH) is a condition found in acute glaucoma. The purpose of this study is to investigate the protective effect of Lycium barbarum polysaccharides (LBP) and its protective mechanisms in the AOH insult. LBP has been shown to exhibit neuroprotective effect in the chronic ocular hypertension (COH) experiments. AOH mouse model was induced in unilateral eye for one hour by ...

متن کامل

Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model.

PURPOSE To investigate the survival of melanopsin-expressing retinal ganglion cells (mRGCs) after the induction of chronic ocular hypertension. METHODS Intraocular pressure (IOP) was elevated in adult Sprague-Dawley rats using an argon laser to photocoagulate the episcleral and limbal veins. IOP was measured with a calibrated tonometer and monitored for a period. Seven days before the animals...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 51 6  شماره 

صفحات  -

تاریخ انتشار 2010